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Abstract: The optimization of aqueous solubility is an important step along the route to bringing
a new therapeutic to market. We describe the development of an empirical computational model
to rank the pH-dependent aqueous solubility of drug candidates. The model consists of three
core components to describe aqueous solubility. The first is a multivariate QSAR model for the
prediction of the intrinsic solubility of the neutral solute. The second facet of the approach is the
consideration of ionization using a predicted pKa and the Henderson-Hasselbalch equation.
The third aspect of the model is a novel method for assessing the effects of crystal packing on
solubility through a series of short molecular dynamics simulations of an actual or hypothetical
small molecule crystal structure at escalating temperatures. The model also includes a Monte
Carlo error function that considers the variability of each of the underlying components of the
model to estimate the 90% confidence interval of estimation.
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Introduction
The importance of aqueous solubility in the discovery and

development of new drugs is difficult to overstate. This
critical physical property affects many aspects of the
discovery and development cycle, from the accuracy of
screening assays to the selection of a final dosage form for
clinical trials.1 Nonetheless, limited aqueous solubility is a
perpetual obstacle in the successful discovery and develop-
ment of a new drug as typical medicinal chemistry routes to
improved pharmacological potency frequently increase li-
pophilicity as compounds move from early leads to drugs.2

Not surprisingly, a seemingly endless number of papers
have appeared in the literature dealing with solubility predic-
tion using computational models. Methods employing linear
statistics,3-6 sophisticated machine learning approaches,7-17

or continuum solvation methods18-20 have all been reported
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in recent years for the estimation of aqueous solubility. For
the most part, these reports have utilized large data sets
coupled with powerful statistical approaches to generate
predictions. Several reviews of aqueous solubility prediction
have appeared recently.21-24

These reviews have clearly shown that reliable prediction
of aqueous solubility has proven quite difficult. Far from
being a simple property, solubility is affected by molecular
properties, pH, and crystal packing among other factors. As
most drugs are electrolytes, the effect of ionization is critical
to useful solubility estimation. Most computational models
have completely ignored this aspect of solubility, or have
made an implicit assumption that sophisticated learning
algorithms can predict solubility at the pH at which the
underlying data was measured. More recently, a number of
reports have made explicit use of a predicted pKa to estimate
the solubility at a particular pH.10,25-28

As mentioned above, solubility is also dependent on the
crystal form of the solid material used in the measurement.
A recent review gives an excellent overview of the role of
the solid state on pharmaceutical developability consider-
ations.29 Most interesting out of this review is the notion
that solubility differences among polymorphs is typically less
than 10-fold.29 Other reports put the typical effect of different
polymorphs at less than a 2-fold change in solubility.30 The
difference in solubility between crystalline material and
solubility from amorphous material, however, can be quite
substantial.29 This may imply that including information
regarding crystal packing is important for accurate prediction,
but that highly accurate information regarding the exact
crystal form may not be necessary. However, most compu-
tational models of solubility have ignored, or treated
implicitly, the effect of crystal packing. This is likely be-
cause of the difficulty in modeling the condensed phase,
and a lack of information on the precise crystal form
used to derive the experimental data. There are a few not-
able exceptions, however, that include factors relating to
crystallinity.28,31-33
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This report will detail our efforts at developing a com-
putational model of aqueous solubility. Our approach is to
divide solubility into three primary components: the intrinsic
solubility of the neutral form free of its crystal lattice, the
effect of crystal packing, and the effect of ionization. The
intrinsic solubility model uses a linear QSPR model trained
using data from the literature. Consistent with previous
literature, the Henderson-Hasselbalch equation is used with
an estimated pKa to account for ionization. Crystal packing
is assessed by tracking the unit cell integrity over a series
of short molecular dynamics simulations at progressively
higher temperatures. Finally, a Monte Carlo routine is utilized
to generate error bars for the prediction based on the
estimated variability of each underlying model component.
Together, these represent an interpretable, modular approach
to modeling solubility. Such a computational framework
could serve as a reasonable basis for the iterative improve-
ment of solubility estimation over time.

Methods
Materials. Commercially available compounds tested and

all other chemicals used were obtained from Sigma Chemical
Company (St. Louis, MO).

Solubility Measurements.An excess of each compound
was equilibrated with either a 25 mM phosphate buffer (pH
6.5) or in water. Samples were mixed in vials for at least 1
day at room temperature (22( 2 °C) until equilibrium was
reached using a shaker. After visual inspection more drug
substance was added, if needed. At the end of the equilibra-
tion the samples were filtered using a syringe and Gelman
Acrodisc 13 CR PTFE 0.45µm membrane. The pH of the
filtrate was measured, diluted as appropriate, and subse-
quently analyzed by RP-HPLC.

Computational Methods.For the purposes of developing
a computational model of aqueous solubility, we postulated
an ansatzdescribing the functional form for the estimation
of solubility at an arbitrary pH:

where the first term is a predicted intrinsic solubility, the
second term describes the impact of ionization using the
Henderson-Hasselbalch equation, and the third term captures
the influence of crystal packing forces that are mitigated by
the degree of ionization (FI) of the solute.øpack is ap-
proximated byXpack with an assumed functional form:

whereDT is the slope of the mean square atomic displace-
ment versus time curve from a series of short molecular

dynamics simulations at temperatureT (in kelvins).Xpackwill
be discussed in more detail below.

Intrinsic Solubility Prediction. Compounds with mea-
sured solubility were taken from the literature.34 Only
compounds with a molecular weight below 500 daltons and
no ionizable centers were selected. Ionizable compounds
were eliminated by ionizing compounds using LigPrep,35 and
then removing any compounds containing a formal charge.
Removing these compounds was necessary, as we could not
verify at what pH the literature solubility measurements were
determined. The compounds meeting these criteria were then
viewed visually, and only those considered to be “reasonable”
structures were included. There was no formal definition for
what functionality passed this inspection. The goal was
simply to avoid compounds that contained strange function-
ality. Compounds were divided into a low MW set (MWe
250) and a high MW set (250< MW e 500). Splitting the
data by molecular weight is consistent with observations of
solvent entropy scaling differently with larger solutes
compared to smaller solutes.36,37 This resulted in 219
compounds in the high MW set and 362 in the low MW set.
The high MW set was randomly divided into a training set
of 199 compounds and a test set of 20 compounds. The low
MW set was randomly divided into a 326 compound training
set and a 36 compound test set. The list of compounds is
given in the Supporting Information.

Compounds were modeled in the neutral form. A single
conformation was generated using Omega38 and minimized
using Batchmin39 with OPLS2003 and implicit water. Using
these conformations, many molecular descriptors were
calculated for the training and validation data used in the
intrinsic solubility model development. Included among these
were the VolSurf descriptors40 using both the Dry and water
probes, clogP, polar surface area, and counts of H-bond
acceptors and H-bond donors. A total of 86 descriptors were
calculated for use in predicting the intrinsic solubility.

A supervised feature selection algorithm using simulated
annealing with a leave-10%-out PRESS cross-validation
function was employed to select features for the intrinsic
solubility model. This selection algorithm is similar to others
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2004, 120, 9729-9744.
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reported in the literature.41,42 Initially, a random subset of
descriptors is chosen. Following this, a descriptor is removed
and replaced with another feature from the pool. This
replacement is done randomly, with the exception that the
new feature must have anr < 0.9 (r2 < 0.81) to the other
features already present in the model. There is a 1% chance
at each iteration that the number of descriptors may be
decreased or increased. The PRESS score is then evaluated
for this new model. Each descriptor used in a model adds
0.002× rmsav to the PRESS score, where rmsav is the RMSE
if every observation was predicted as the average value of
the dependent variable. If the score is an improvement over
the previous model, the result is accepted and the procedure
repeats. If the model is not an improvement, the model may
still be accepted based on a probability derived from the
Boltzmann distribution.

The implementation used here was programmed in our
laboratories and fixes the initial temperature such that 80%
of the detrimental steps are accepted originally.43 The
temperature is then decreased by 25% every 1000 iterations.
The selection process halts when no model is accepted for
900 iterations.

The selected feature values for the training data were then
normalized to a range of 0 and 1. These normalized values
were utilized by a least median squares (LMS) regression
algorithm44 to generate coefficients. LMS regression mini-
mizes the median squared residual rather than the sum of
the squared residuals as is performed using ordinary multiple
linear regression. By minimizing the median squared residual,
the impact of compounds with high statistical leverage to
alter the derived linear coefficients is limited to yield the
linear relationship that best fits the majority of the available
data. A simple way to think of observations with high
leverage is that they have an unusual combination of values
for the independent variables (i.e., descriptors). This leaves
these observations far from the bulk of observations in
descriptor space used in the regression, providing these
observations tremendous impact on the resulting coefficients.
It is important to realize that an observation can have
substantial leverage but not be an outlier, or could be an
outlier and not have leverage. Leverage points that are
outliers will significantly distort the derived linear relation-
ship, while leverage points that are not outliers may
significantly affect the resulting standard errors of predic-

tion.45 The LMS algorithm minimizes the impact of leverage
data on the coefficients, possibly alleviating some concerns
about the quality of data used to derive the intrinsic solubility
model. For an in-depth discussion of the algorithm the reader
is referred to ref 46. The approach has been used previously
in the chemical literature.47-49

Crystal Packing Simulations.Compounds were selected
for purchase based on the following criteria: (a) having an
available neat (no salts or solvates) X-ray structure in the
Cambridge Structural Database (CSD),50 (b) being reasonably
drug-like by manual inspection, and (c) being available from
a vendor (Table 1). Using our internal protocols, the
solubility at a pH of 6.5 was measured. In addition to this
data, 37 discovery compounds were also employed. These
compounds had previously measured solubility from crystal-
line material along with solved crystal structures. Together,
this collection of compounds was used to assess the ability
of the model to capture the effect of crystal packing on
solubility.

The crystal packing parameterXpack from eq 2 is based
on the hypothesis that crystal lattice energy should be
proportional to the stability of a unit cell when additional
energy is added to the system.51,52 To assess this, the
crystallographic unit cell was utilized in a series of short
molecular dynamics simulations in which the mean square
atomic displacement over time was calculated. The MD
simulations were performed with Discover3 (cdiscover)53

using the CFF91 force field. For complexes that could not
be parametrized using CFF91, the CVFF force field was
used. The simulations are performed as a constant pressure
(NTP) simulation at a pressure of 1 bar. The simulation
details are shown in Table 2. Separate simulations are

(41) Sutter, J. M.; Jurs, P. C. Selection of molecular descriptors for
quantitative structure-activity relationships.Data Handling Sci.
Technol.1995, 15, 111-132.

(42) Sutter, J. M.; Dixon, S. L.; Jurs, P. C. Automated Descriptor
Selection for Quantitative Structure-Activity Relationships Using
Generalized Simulated Annealing.J. Chem. Inf. Comput. Sci.
1995, 35, 77-84.

(43) Sutter, J. M. Personal communication; Accelrys, Inc.
(44) Massart, D. L.; Kaufman, L.; Rousseeuw, P. J.; Leroy, A. Least

median of squares: a robust method for outlier and model error
detection in regression and calibration.Anal. Chim. Acta1986,
187, 171-179.

(45) Croux, C. Are Good Leverage Points Good or Bad? International
Conference on Robust Statistics: Lisbon, Portugal, 2006.

(46) Rousseeuw, P. J. L.; Annick M.Robust Regression and Outlier
Detection; John Wiley & Sons, Inc.: New York, NY, 1987; p
329.

(47) Cruz Ortiz, M.; Sarabia, L. A.; Herrero, A. Robust regression
techniques.Talanta2006, 70, 499-512.

(48) Igumenova, T. I.; Lee, A. L.; Wand, A. J. Backbone and Side
Chain Dynamics of Mutant Calmodulin-Peptide Complexes.
Biochemistry2005, 44, 12627-12639.

(49) Johnson, S. R.; Jurs, P. C. Prediction of acute mammalian toxicity
from molecular structure for a diverse set of substituted anilines
using regression analysis and computational neural networks.
Computer-Assisted Lead Finding and Optimization: Current Tools
for Medicinal Chemistry, [European Symposium on Quantitative
Structure-Activity Relationships], 11th, Lausanne, Sept 1-6, 1996;
1997, pp 31-48.
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(51) Gavezzotti, A. The chemistry of intermolecular bonding: organic
crystals, their structures and transformations.Synlett2002, 201-
214.
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Chem. Soc.2000, 122, 10724-10725.
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Table 1. Compounds Used To Parametrize Crystal Packing Simulation
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performed over 10 ps at temperatures of 300, 400, 500, 600,
and 700 K. The mean square atomic displacement (MSD),
relative to the starting unit cell coordinates, is calculated
every 10 fs and plotted versus simulation time at each
temperature. The valueDT used in eq 2 the slope of the MSD
vs time curve at temperatureT. Each simulation is repeated
3 times, and the average and standard deviation ofXpack from
eq 2 is calculated.

The maximum effect of 2 orders of magnitude was selected
based on the results presented in Bergstrom et al.26 In this
work, the authors cite the typical increase in solubility upon
ionization to be approximately 4.25 orders of magnitude.
However, the greatest value they measured was 6.5 orders
of magnitude. We hypothesized that this difference was
related more to the effect of crystal packing leading to a
suppression of the intrinsic solubility than to the heightened
impact of ionization for some compounds. When the
functional form for eq 2 was postulated, the coefficients were
chosen to sum to 2, with larger effects arising as the unit
cell maintained organization even at high temperature.

When used for prediction, it is typical for compounds to
lack crystallographic data. In this case, virtual crystal
structures were simulated using the crystal structure of a
related compound. These were generated by overlaying the
new compound on to the monomers of the asymmetric unit
cell of the known compound. The unit cell was then
expanded using the CRYSIN functionality within SYBYL.54

Any salts or solvates in the observed crystal data were
included in the simulated structure.

Confidence Interval Estimate. A Monte Carlo simulation
is used to generate an estimate of the 90% confidence interval
of prediction. Each of the main components of the model is
varied by adding normally distributed noise with a mean of
zero and a standard deviation consistent with the variability
of the estimated component. While the ACD/pKa program
does provide a specific error term for each estimated pKa,
we have found it to be unrealistically low for most estimates.

We have assumed a standard deviation of(0.5 for the pKa

estimates. The variability of the intrinsic solubility is varied
within the 90% confidence interval of prediction from the
multiple linear regression. The value of the crystal packing
parameter,Xpack, is varied within the standard deviation of 3
runs of the MD simulation. Each of these components of
the pH-dependent solubility prediction model is varied with
the above error bounds over 1000 iterations at each pH. The
median calculated solubility value at each pH is used as the
point estimate, with the 10th percentile and 90th percentile
values used as the bounds for the confidence interval. The
method is similar to the percentile method described by
Buckland.55

Results and Discussion
The prediction of aqueous solubility at an arbitrary pH

begins with an estimate of the intrinsic solubility. The
intrinsic solubility of a compound is the aqueous solubility
of the nonionized form of the compound. For our purposes,
this intrinsic solubility should not include the impact of
crystal packing to the extent possible. Second is a correction
for the effect of ionization on the pH-solubility curve.
Finally, the model includes a procedure for evaluating the
impact of crystal packing on the aqueous solubility.

The features selected for the estimation of the intrinsic
solubility are shown in Table 3 along with their coefficients.
Figure 1A shows the calculated versus observed plot for the
higher MW nonionizable compounds used in the training
and validation of this model. Clearly, the model performs
well over the span of the 11 orders of magnitude of the
intrinsic solubility data. Figure 1B shows the same data, but
focused in on the 0.01µM to 100 µM range of data that is
most relevant to discovery in the pharmaceutical industry.
A similar plot of the low MW data is shown in the
Supporting Information.

(54) SYBYL; Tripos, Inc.: St. Louis, MO.
(55) Buckland, S. T. Algorithm AS 214: Calculation of Monte Carlo

Confidence Intervals.Appl. Stat.1985, 34, 296-301.

Table 2. Parameters for the Molecular Dynamics
Simulations

nonbonded interactions:

summation method: group based

cutoff: 45

spline width: 1.0

buffer width: 0.5

minimization:

iterations: 300

movement limit: 0.2

steepest descent convergence: 1000

conjugate gradient: convergence: 10 method: Polak

Newton convergence: 0.1 method: BFGS

dynamics:

time: 10 ps step: 1 fs

ensemble: NPT temp control: Andersen

integration method: velocity Verlet

pressure: 1 bar pressure control: Parrinello

Table 3. Descriptors and Coefficients of the Intrinsic
Solubility Model

coeff

descriptor label MW g 250 MW < 250

no. of H-bond acceptors HA 1.22 0.72
hydrophilic interaction volume

at -3.0 kcal/mol
W5 3.98 2.23

hydrophilic capacity
at -0.2 kcal/mol CW1 0.85 1.66
at -2.0 kcal/mol CW4 -6.88 -6.51

hydrophobic interaction volume
at -0.6 kcal/mol

D3 -1.94 -1.48

critical packing CP -2.42 -1.99
molecular weight MW -2.98 -1.46
cLogP cLogP -5.69 -6.03
constant 0.1 2.36

R2 (train/test) 0.88/0.93 0.79/0.85
RMSE (train/test) 0.61/0.50 0.54/0.49
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Solubility is the balance of forces between cavity forma-
tion, solute-solute interactions, and solute-solvent interac-
tions. The MW and the critical packing feature relate to the
molecular size and shape. They are likely related to the
energy required to form a cavity in the solvent large enough
to hold the solute molecule. The remaining features most
likely relate to intermolecular interactions between the solute
and solvent molecules or between multiple monomers of the
solute. In general, the coefficients are in line with the basic
intuition regarding the role of hydrophilicity and solubility.

The lone exception is the sign of the coefficient on the
hydrophilic capacity factor at-2.0 kcal/mol (CW4) descrip-
tor. The coefficient on this descriptor leads to a prediction
of lower solubility for compounds with higher hydrophilic
potential. At first glance, this is contradictory to the general
perception regarding solubility and polarity. However,
solute-solute interactions are also very important in aqueous
solubility. Raevsky and coauthors31 uncovered a similar trend
in experimental data in which compounds with strong
H-bond acceptors and donors have lower than expected
solubility. It is possible that the CW4 feature is describing
the potential for stronger solute-solute interactions for
certain types of polar groups. It is also worth noting that

while the coefficient is fairly large for the CW4 feature, most
compounds do not have large values for this descriptor. Still,
the interplay between the CW2 and CW4 features is
particularly important in the model.

Crystal packing has long been a vexing problem with
respect to aqueous solubility prediction. Yalkowsky’s general
solubility equation28 was an early attempt at incorporating
information regarding the crystal lattice into a prediction of
aqueous solubility. More recently, several attempts have been
made at predicting melting points, a frequent surrogate for
crystal packing in solubility models.28,32,56-60 We hypoth-
esized that the amount of atomic motion observed in a unit
cell in response to adding increasing amounts of energy
would be related to the effect of crystal packing on solubility.
Figure 2 shows the relationship betweenXpack and melting
point for three different groups of crystal structures. One
set uses several crystal forms of a single compound, each of
which varies by salt or solvate or is a polymorph of another
included structure. The other two groups of compounds
represent compounds from two different discovery projects.
The relationship is roughly linear within each group of

(56) Katritzky, A. R.; Jain, R.; Lomaka, A.; Petrukhin, R.; Maran, U.;
et al. Perspective on the Relationship between Melting Points and
Chemical Structure.Cryst. Growth Des.2001, 1, 261-265.

(57) Karthikeyan, M.; Glen, R. C.; Bender, A. General melting point
prediction based on a diverse compound data set and artificial
neural networks.J. Chem. Inf. Model.2005, 45, 581-590.

(58) Johnson, J. L. H.; Yalkowsky, S. H. Two New Parameters for
Predicting the Entropy of Melting: Eccentricity (e) and Spirality
(m). Ind. Eng. Chem. Res.2005, 44, 7559-7566.

(59) Jain, A.; Yang, G.; Yalkowsky, S. H. Estimation of Melting Points
of Organic Compounds.Ind. Eng. Chem. Res.2004, 43, 7618-
7621.

(60) Bergstroem, C. A. S.; Norinder, U.; Luthman, K.; Artursson, P.
Molecular Descriptors Influencing Melting Point and Their Role
in Classification of Solid Drugs.J. Chem. Inf. Comput. Sci.2003,
43, 1177-1185.

Figure 1. (A) Calculated versus observed plot for intrinsic
solubility for nonionizable training and test data. (B) Focused
on the pharmaceutically relevant solubility range.

Figure 2. Relationship between Xpack and melting point for
three groups of compounds. The first group (open diamonds)
are 10 different crystal forms of the same compound. Projects
1 and 2 are compounds from two discovery projects.
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compounds, but shifts to higher values ofXpackas the average
number of H-bonds in the unit cells decreases. This suggests
avenues for further investigation going forward.

Figure 3 shows the plot of the mean squared atomic
displacement versus time for griseofulvin, a marketed
antifungal known to have solubility limited absorption. This
simulation, performed using the GRISFL03 structure from
the CSD, gives the value ofXpack ) 1.57.

Wassvik et al.61 measured the intrinsic solubility of
griseofulvin to be log(So,M) ) -4.83 (14.8 µM). The
intrinsic solubility prediction generated by the model de-
scribed here is log(So,M) ) -3.33 (141µM). Including the
effect of crystal packing above, the estimated solubility is
log(So-Xpack,M) ) -4.90 (12.5µM). Predictions of the
intrinsic solubility of 25 compounds given in Wassvik et al.61

were generated using the intrinsic solubility model discussed
above. Figure 4A shows the prediction results using only
the intrinsic model. The model predicts the intrinsic solubility
quite well with anR2 ) 0.70 and an RMSE) 0.85 log unit.
Figure 4B shows the predictions after correction for crystal
packing.

The crystal packing corrections were generated using
crystal structures obtained from the CSD. By including a
contribution from crystal packing, theR2 improves to 0.75
while the RMSE is increased to 0.86 log unit. While the
overall RMSE does not improve with the inclusion of crystal
packing effects, the median absolute error improves dramati-
cally from 0.63 to 0.46. This difference is the result of
particularly poor predictions for mifepristone and diazepam.

For these two compounds, the inclusion of the crystal packing
parameter gives predictions that are noticeably worse than
those of the intrinsic solubility model alone. TheR2 improves
to 0.85 and the RMSE to 0.62 by excluding these two
compounds. Perphenazine is also very poorly predicted,
although the prediction does not get any worse by including
the crystal packing contribution.

Of course, most potential drug compounds contain some
sort of basic or acidic ionizable functionality. The literature
contains several reports of using the Henderson-Hasselbalch
equation to correct for ionization. We have followed the same
basic approach here. Bergstrom et al.26 highlighted some of
the weaknesses of this approach including the variability in
the slope of ionization. We made several unsuccessful
attempts (not shown) to correct for the effects of aggregation
on the slope of ionization. Included among these were linear
and nonlinear QSAR approaches to predict aggregation that
incorporated conformational and energetic changes upon
ionization. While some of these approaches appeared inter-
esting in training, none proved reliable in improving solubil-
ity estimation upon external validation.

For our purposes, we have utilized a predicted pKa using
the ACD/pKa program.62 In addition, we cap the contribution
of ionization to solubility at 4.25 orders of magnitude for a(61) Wassvik, C. M.; Holmen, A. G.; Bergstroem, C. A. S.; Zamora,

I.; Artursson, P. Contribution of solid-state properties to the
aqueous solubility of drugs.Eur. J. Pharm. Sci.2006, 29, 294-
305.

(62) ACD/pKa, 4.76 ed.; Advanced Chemistry Development, Inc.:
Toronto, ON, Canada.

Figure 3. Results from the crystal packing simulation of
griseofulvin. The GRISFL03 structure was utilized from the
CSD. The slopes of the mean square displacement curves
are as follows: 300 K, 0.01; 400 K, 0.24; 500 K, 0.37; 600 K,
0.67; 700 K, 0.57. Equation 2 gives the result Xpack ) 1.57.

Figure 4. Predicted versus observed results for intrinsic
solubility of compounds from Wassvik et al. (A) Results from
the intrinsic solubility model only. (B) Predictions including the
estimate of the impact of crystal packing.
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single ionizable center and a total of 5 orders of magnitude
for more than a single ionizable center. While the cap of
4.25 is drawn from the literature26 and may be reasonable
in the absence of any other information, the cutoff of 5 orders
of magnitude for polyelectrolytic systems is completely
arbitrary. It is worth pointing out that, while the predicted
impact of ionization is capped at 4.25 log units, it can appear
as great as 6.25 log units as a result of the depression of the
intrinsic solubility based on the contribution of crystal effects
discussed below.

Figure 5 shows the measured63 and predicted pH-
solubility curves for glyburide. The predicted intrinsic
solubility, excluding crystal packing, was-5.904( 0.351
(log molarity). The crystal packing simulation yieldsXpack

) 1.3( 0.25, which together with the predicted LogSo gives
-7.2 compared to a measured63 Log So ) -7.05. The
predicted pKa was 4.86 using ACD/pKa, with an assumed
variability of (0.5. The measured pKa is 5.3. Viewed as a
whole, the predicted pH-solubility curve is a quite reason-
able estimate of the measured curve. However, estimates at
a specific pH can have large errors when in the range of
pH’s affected by ionization as evidenced by the predicted
solubility at pH ) 6 being 7.4µg/mL (with a 90% range
from 2.4 to 24.1µg/mL) compared to a measured value of
0.62 µg/mL.

Figure 6A shows the measured64 and predicted pH-
solubility curve for haloperidol as the HCl salt. The crystal

packing simulation was performed based on HALDOL01
from the CSD, which is a small molecular crystal structure
of the HCl salt of haloperidol. Figure 6B shows the
measured64 and predicted pH-solubility curve for haloperidol
as the mesylate salt. The crystal packing simulation was
performed based on the CSD entry YANMUW, where the
mesylate ion was modeled manually into the crystal structure
in place of the saccharinate ion. The replacement was guided
by simple pharmacophore and steric considerations. The
crystal packing simulation used the CFF91 forcefield, which
may have significant shortcomings when modeling charged
ions. In both cases, the predictions are quite reasonable
compared to the measured values. It is noteworthy that the
maximum solubility of the HCl salt is limited by the common
ion effect, which is not accounted for in the current model.
The model also uses a slope of 1.0 for the ionization curve.
The actual slope of the observed pH-solubility plot for the
mesylate salt is slightly over 2.

(63) Glomme, A.; Maerz, J.; Dressman, J. B. Comparison of a
miniaturized shake-flask solubility method with automated po-
tentiometric acid/base titrations and calculated solubilities.J.
Pharm. Sci.2005, 94, 1-16.

(64) Li, S.; Wong, S.; Sethia, S.; Almoazen, H.; Joshi, Y. M., et al.
Investigation of Solubility and Dissolution of a Free Base and
Two Different Salt Forms as a Function of pH.Pharm. Res.2005,
22, 628-635.

Figure 5. Predicted pH-solubility curve for glyburide.
Experimental data from ref 63.

Figure 6. Predicted and observed pH-solubility curves for
(A) haloperidol HCl salt and (B) mesylate salt. Data from
ref 64.
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The ability to interpret a predictive model is critical to its
use in driving discovery projects. This is frequently one of
the major criticisms of models for ADMET related properties.
Figure 7 shows the descriptor impact on the solubility
predictions for haloperidol (HCl salt) and glyburide at a pH
of 6.5. Haloperidol and glyburide were predicted to have an
aqueous solubility of 130µg/mL and 24µg/mL, respectively,
at pH of 6.5. The plot is generated by multiplying each
normalized feature value by its coefficient in the intrinsic
solubility model. Also shown are the contributions from the
crystal packing simulation and ionization at pH) 6.5. The
plot shows that the difference in the predictions for the two
compounds is largely driven by the difference in molecular
weights. As discussed above, this feature likely encodes the
energy required to create a cavity large enough to accom-
modate each solute. Note that the effect of crystal packing
appears small in Figure 7 because the effect is modulated

by the degree of ionization (eq 1). At a pH of 6.5 both
glyburide and haloperidol are expected to be ionized.

The optimization of solubility in discovery projects is often
driven by a calculated logP followed by a measured
chromatographic logP and measured solubility. Typically
this approach is quite reasonable, however occasionally this
strategy does not lead to improved solubility. Figure 8 shows
the relationship between the logP measured by an HPLC
assay and the measured aqueous solubility for discovery
compounds from a single chemotype. All the measurements
were from crystalline material at pH) 6.5. The correlation
is quite poor (r2 ) 0.21), indicating that crystal packing may
substantially affect aqueous solubility. Figure 9 shows the
correlation between the predicted solubility at pH) 6.5 and
the measured solubility. The crystal packing term,Xpack, was
calculated using simulated crystal structures based on the
structure of a close analogue. The close analogue chosen
was one from the same chemical series with a solved X-ray
structure and was the closest to being “isographic” with the
compound of interest. The correlation between the predicted
and measured values is substantially improved (R2 ) 0.56)
compared to the results for the measured logP. While far
from ideal, these results imply a much greater utility in
evaluating molecular hypotheses with respect to solubility.

Conclusion
We have assembled a computational model for the

estimation of aqueous solubility at an arbitrary pH that
explicitly accounts for the effects of intrinsic solubility,
ionization, and crystal packing. While complicated in
functional form, the model is readily interpretable by
analyzing the underlying components in detail. In addition,
a Monte Carlo error function is employed to provide a
confidence interval for the estimate. This confidence interval
gives users a better appreciation of the sensitivity of an
estimate at a particular pH. This is particularly true when
the pH of interest lies within 2 log units of the pKa of the
molecule and the estimation solubility changes rapidly in
response to small changes in pH.

Figure 7. Descriptor impact on solubility predictions for
glyburide and haloperidol (HCl salt) at pH ) 6.5. pH denotes
the impact from ionization at pH ) 6.5, Xtal denotes the impact
from crystal lattice at pH ) 6.5.

Figure 8. HPLC log P (pH ) 6.5) compared to the observed
solubility at pH ) 6.5 for compounds from a single discovery
program. Measurements from crystalline material. Note that
most measured solubility values of either 0.1 or 1 µg/mL were
reported as <0.1 µg/L or <1 µg/mL, respectfully.

Figure 9. Predicted aqueous solubility at pH ) 6.5 compared
to the observed solubility at pH ) 6.5 for compounds from a
single discovery program. Measurements from crystalline
material. Note that most measured values of either 0.1 or 1
µg/mL were reported as <0.1 µg/L or <1 µg/mL, respectfully.
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Another benefit of the approach employed here is that the
method is likely to be more extensible than models that rely
on high order machine learning algorithms. We believe this
is an important advantage as undoubtedly the method will
need further improvement to include the effect of low MW
aggregation, the common ion effect, and an expansion of
the underlying chemical space captured by the training data.
In addition, there is much room for improvement in the
current approach to encoding crystal packing. It is quite
probable that different computational parameters, possibly
including longer simulation times, would improve the quality,
consistency, and reliability of the simulation. Our future work
will also concentrate on the shift in the relationship between
Xpack and melting point observed in Figure 2.

While an interesting approach, the crystal packing simula-
tion reported here is computationally intensive relative to
most aqueous solubility models, taking approximately 1 CPU
hour per temperature on an Opteron Linux workstation. In
addition, it requires a real or putative crystal form upon which
to act. The use of a simulated crystal structure, while
pragmatic, introduces a significant potential source of error

into the model. It is difficult to quantify how similar a
molecule must be to the chemical structure of an analogue
with a solved crystal structure in order for the simulated
structure to relevant. Strictly speaking, the structures need
to be nearly isographical to have a high likelihood of
adopting similar unit cells. One interesting possibility is the
use of a simulation similar to the one discussed here to
evaluate numerous simulated crystal structures that can be
generated from the several crystal structure prediction
programs now available. However, as the experimental data
for the aqueous solubility of polymorphs leans toward only
2-10-fold differences in solubility, we believe a simulated
structure represents an acceptable starting point in the
absence of any of other information.

Supporting Information Available: Training and
validation data for the high MW and low MW intrinsic
solubility models and plot of calculated versus observed
instrinsic solubility for the low MW model. This material is
available free of charge via the Internet at http://pubs.acs.org.

MP070030+
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