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Abstract: The optimization of agueous solubility is an important step along the route to bringing
a new therapeutic to market. We describe the development of an empirical computational model
to rank the pH-dependent aqueous solubility of drug candidates. The model consists of three
core components to describe aqueous solubility. The first is a multivariate QSAR model for the
prediction of the intrinsic solubility of the neutral solute. The second facet of the approach is the
consideration of ionization using a predicted pK, and the Henderson—Hasselbalch equation.
The third aspect of the model is a novel method for assessing the effects of crystal packing on
solubility through a series of short molecular dynamics simulations of an actual or hypothetical
small molecule crystal structure at escalating temperatures. The model also includes a Monte
Carlo error function that considers the variability of each of the underlying components of the
model to estimate the 90% confidence interval of estimation.
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Introduction Not surprisingly, a seemingly endless number of papers

The importance of aqueous solubility in the discovery and have appeared in the literature dealing with solubility predic-
development of new drugs is difficult to overstate. This tion using computational models. Methods employing linear
critical physical property affects many aspects of the Statistics}® sophisticated machine learning approachés,
discovery and development cycle, from the accuracy of Or continuum solvation methotfs?® have all been reported
screening assays to the selection of a final dosage form for
clinical trials! None_theless, limited aqueous solubility is @ (2) Oprea, T. I.; Davis, A. M.: Teague, S. J.; Leeson, P. D. Is There
perpetual obstacle in the successful discovery and develop-  a Difference between Leads and Drugs? A Historical Perspective.
ment of a new drug as typical medicinal chemistry routes to J. Chem. Inf. Comput. Sc2001, 41, 1308-1315.
improved pharmacological potency frequently increase li- (3) Chen, X.-Q.; Cho, S. J.; Li, Y.; Venkatesh, S. Prediction of

pophilicity as compounds move from early leads to driigs. aqueous solubility of qrgani_c compounds_ using a quantitative
structure-property relationshig. Pharm. Sci2002 91, 1838~
. 1852.
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in recent years for the estimation of aqueous solubility. For

These reviews have clearly shown that reliable prediction

the most part, these reports have utilized large data setsof aqueous solubility has proven quite difficult. Far from
coupled with powerful statistical approaches to generate being a simple property, solubility is affected by molecular

predictions. Several reviews of aqueous solubility prediction
have appeared recenfly.?4

(7) Palmer, D. S.; O'Boyle, N. M.; Glen, R. C.; Mitchell, J. B. O.
Random Forest Models To Predict Aqueous SolubilityChem.

Inf. Model.2007, 47, 150-158.

(8) Huuskonen, J.; Salo, M.; Taskinen, J. Aqueous solubility predic-
tion of drugs based on molecular topology and neural network
modeling.J. Chem. Inf. Comput. Sc1998 38, 450-456.

(9) Engkvist, O.; Wrede, P. High-Throughput, In Silico Prediction
of Aqueous Solubility Based on One- and Two-Dimensional
Descriptors.J. Chem. Inf. Comput. S002 42, 1247-1249.

(10) Hansen, N. T.; Kouskoumvekaki, I.; Jorgensen, F. S.; Brunak,
S.; Jonsdottir, S. O. Prediction of pH-Dependent Aqueous
Solubility of Druglike MoleculesJ. Chem. Inf. ModeR2006 46,
2601-26009.

(11) Manallack, D. T.; Tehan, B. G.; Gancia, E.; Hudson, B. D.; Ford,
M. G., et al. A Consensus Neural Network-Based Technique for
Discriminating Soluble and Poorly Soluble CompounH<Chem.

Inf. Comput. Sci2003 43, 674-679.
(12) Votano, J. R.; Parham, M.; Hall, L. H.; Kier, L. B.; Hall, L. M.

properties, pH, and crystal packing among other factors. As
most drugs are electrolytes, the effect of ionization is critical
to useful solubility estimation. Most computational models
have completely ignored this aspect of solubility, or have
made an implicit assumption that sophisticated learning
algorithms can predict solubility at the pH at which the
underlying data was measured. More recently, a number of
reports have made explicit use of a predictéd o estimate
the solubility at a particular pff.2528

As mentioned above, solubility is also dependent on the
crystal form of the solid material used in the measurement.
A recent review gives an excellent overview of the role of
the solid state on pharmaceutical developability consider-
ations?® Most interesting out of this review is the notion
that solubility differences among polymorphs is typically less
than 10-fold?® Other reports put the typical effect of different
polymorphs at less than a 2-fold change in solubi#tyhe
difference in solubility between crystalline material and
solubility from amorphous material, however, can be quite

Prediction of aqueous solubility based on large datasets using substantiaf® This may imply that including information

several QSPR models utilizing topological structure representation.
Chem. Biodiersity 2004 1, 1829-1841.

(13) Wegner, J. K.; Zell, A. Prediction of Aqueous Solubility and
Partition Coefficient Optimized by a Genetic Algorithm Based
Descriptor Selection Method. Chem. Inf. Comput. Sc2003
43, 1077-1084.

(14) Yan, A.; Gasteiger, J.; Krug, M.; Anzali, S. Linear and nonlinear
functions on modeling of agueous solubility of organic compounds
by two structure representation methodlsComput.-Aided Mol.
Des.2004 18, 75-87.

(15) Yan, A.; Gasteiger, J. Prediction of aqueous solubility of organic
compounds by topological descripto@SAR Comb. ScR003
22, 821-829.

(16) Yan, A.; Gasteiger, J. Prediction of Aqueous Solubility of Organic
Compounds Based on a 3D Structure Representalio@hem.

Inf. Comput. Sci2003 43, 429-434.

(17) Schwaighofer, A.; Schroeter, T.; Mika, S.; Laub, J.; Ter Laak,
A., et al. Accurate Solubility Prediction with Error Bars for
Electrolytes: A Machine Learning Approach.Chem. Inf. Model.
2007, 47, 407—424.

(18) Klamt, A.; Eckert, F.; Hornig, M.; Beck, M. E.; Burger, T.
Prediction of aqueous solubility of drugs and pesticides with
COSMO-RS.J. Comput. Chen2002 23, 275-281.

(19) Ikeda, H.; Chiba, K.; Kanou, A.; Hirayama, N. Prediction of
solubility of drugs by conductor-like screening model for real
solvents.Chem. Pharm. Bull2005 53, 253-255.

(20) Oleszek-Kudlak, S.; Grabda, M.; Shibata, E.; Eckert, F.; Naka-
mura, T. Application of the conductor-like screening model for
real solvents for prediction of the aqueous solubility of chlo-
robenzenes depending on temperature and salifdtyiron.
Toxicol. Chem2005 24, 1368-1375.

(21) Gudmundsson, O. S.; Venkatesh, S. Strategies for in silico and

experimental screening of physicochemical propertstech-
nol.: Pharm. Aspect2004 1, 393-412.

(22) Delaney, J. S. Predicting aqueous solubility from struc@Dreg
Discovery Today2005 10, 289-295.

regarding crystal packing is important for accurate prediction,
but that highly accurate information regarding the exact
crystal form may not be necessary. However, most compu-
tational models of solubility have ignored, or treated
implicitly, the effect of crystal packing. This is likely be-
cause of the difficulty in modeling the condensed phase,
and a lack of information on the precise crystal form
used to derive the experimental data. There are a few not-
able exceptions, however, that include factors relating to
crystallinity 283133

(24) Dearden, J. C. In silico prediction of aqueous solubiliypert
Opin. Drug Discaery 2006 1, 31-52.

(25) Dewitte, R. S.; Kolovanov, E. D. Predicting molecular physical
properties Biotechnol.: Pharm. Aspec®004 1, 27—52.

(26) Bergstrom, C. A. S.; Luthman, K.; Artursson, P. Accuracy of
calculated pH-dependent aqueous drug solubiityr.. J. Pharm.
Sci. 2004 22, 387—-398.

(27) Lobell, M.; Sivarajah, V. In silico prediction of aqueous solubility,
human plasma protein binding and volume of distribution of
compounds from calculated pKa and AlogP98 valuktl.
Diversity 2003 7, 69—-87.

(28) Sanghvi, T.; Jain, N.; Yang, G.; Yalkowsky, S. H. Estimation of
aqueous solubility by the general solubility equation (GSE) the
easy wayQSAR Comb. ScR003 22, 258-262.

(29) Huang, L.-F.; Tong, W.-Q. Impact of solid state properties on
developability assessment of drug candidatek. Drug Delivery
Rev. 2004 56, 321—-334.

(30) Pudipeddi, M.; Serajuddin, A. T. M. Trends in solubility of
polymorphs.J. Pharm. Sci2005 94, 929-939.

(31) Raevsky, O. A.; Raevskaja, O. E.; Schaper, K.-J. Analysis of water
solubility data on the basis of HYBOT descriptors. Part 3.
Solubility of solid neutral chemicals and drugdSAR Comb. Sci.
2004 23, 327-343.

(23) Johnson, S. R.; Zheng, W. Recent progress in the computational(32) Ran, Y.; He, Y.; Yang, G.; Johnson, J. L. H.; Yalkowsky, S. H.

prediction of aqueous solubility and absorptigdAPS J.2006
8, E27-EA40.
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This report will detail our efforts at developing a com- dynamics simulations at temperatdr@n kelvins). Xpack will
putational model of aqueous solubility. Our approach is to be discussed in more detail below.
divide solubility into three primary components: the intrinsic  Intrinsic Solubility Prediction. Compounds with mea-
solubility of the neutral form free of its crystal lattice, the sured solubility were taken from the literatife Only
effect of crystal packing, and the effect of ionization. The compounds with a molecular weight below 500 daltons and
intrinsic solubility model uses a linear QSPR model trained no ionizable centers were selected. lonizable compounds
using data from the literature. Consistent with previous were eliminated by ionizing compounds using LigP¥eand
literature, the HenderserHasselbalch equation is used with  then removing any compounds containing a formal charge.
an estimated Ig, to account for ionization. Crystal packing Removing these compounds was necessary, as we could not
is assessed by tracking the unit cell integrity over a series verify at what pH the literature solubility measurements were
of short molecular dynamics simulations at progressively determined. The compounds meeting these criteria were then
higher temperatures. Finally, a Monte Carlo routine is utilized viewed visually, and only those considered to be “reasonable”
to generate error bars for the prediction based on the structures were included. There was no formal definition for
estimated variability of each underlying model component. what functionality passed this inspection. The goal was
Together, these represent an interpretable, modular approackimply to avoid compounds that contained strange function-
to modeling solubility. Such a computational framework ality. Compounds were divided into a low MW set (M#/
could serve as a reasonable basis for the iterative improve-250) and a high MW set (256 MW < 500). Splitting the

ment of solubility estimation over time. data by molecular weight is consistent with observations of
solvent entropy scaling differently with larger solutes
Methods compared to smaller solutés3” This resulted in 219

Materials. Commercially available compounds tested and compounds in the high MW set and 362 in the low MW set.
all other chemicals used were obtained from Sigma Chemical The high MW set was randomly divided into a training set
Company (St. Louis, MO). of 199 compounds and a test set of 20 compounds. The low

Solubility Measurements.An excess of each compound MW set was randomly divided into a 326 compound training
was equilibrated with either a 25 mM phosphate buffer (pH set and a 36 compound test set. The list of compounds is
6.5) or in water. Samples were mixed in vials for at least 1 given in the Supporting Information.
day at room temperature (22 2 °C) until equilibrium was Compounds were modeled in the neutral form. A single
reached using a shaker. After visual inspection more drug conformation was generated using Onmi&gand minimized
substance was added, if needed. At the end of the equilibra-using Batchmiff with OPLS2003 and implicit water. Using
tion the samples were filtered using a syringe and Gelmanthese conformations, many molecular descriptors were
Acrodisc 13 CR PTFE 0.4am membrane. The pH of the calculated for the training and validation data used in the
filtrate was measured, diluted as appropriate, and subse-intrinsic solubility model development. Included among these
quently analyzed by RP-HPLC. were the VolSurf descriptofsusing both the Dry and water

Computational Methods. For the purposes of developing probes, clogP, polar surface area, and counts of H-bond
a computational model of aqueous solubility, we postulated acceptors and H-bond donors. A total of 86 descriptors were
an ansatzdescribing the functional form for the estimation calculated for use in predicting the intrinsic solubility.

of solubility at an arbitrary pH: A supervised feature selection algorithm using simulated
annealing with a leave-10%-out PRESS cross-validation
Log(S,n) = Log(S,) + function was employed to select features for the intrinsic
min[Log[lOz NacidgpH—pK o)+ NOaSepK o — pH)+1 4.2,5] _ solubility model. This selection algorithm is similar to others
XpackeXp(_F|) (1) (33) Abraham, M. H.; Le, J. The correlation and prediction of the
solubility of compounds in water using an amended solvation
where the first term is a predicted intrinsic solubility, the energy relationshipJ. Pharm. Sci1999 88, 868-880.

second term describes the impact of ionization using the (34) Huuskonen, J. Estimation of Aqueous Solubility for a Diverse
Hendersor-Hasselbalch equation, and the third term captures Set of Organic Compounds Based on Molecular Topolahy.
the influence of crystal packing forces that are mitigated by Chem. Inf. Comput. Sc200Q 40, 773-777.

PRI . ~ (35) LigPrep, 20113 ed.; Schrodinger, LLC: New York.
the degree of ionizationH) of the solute.ypa is ap (36) Huang, D. M.; Chandler, D. The Hydrophobic Effect and the

proximated byXpack With an assumed functional form: Influence of Solute-Solvent Attractiond. Phys. Chem. BR002
0.1 0.2 0.3 106, 20472053.
Apack™ XpackE 2 + 2 + 2 + (37) Jensen, M. O.; Mouritsen, O. G.; Peters, G. H. The hydrophobic
Dygg 1 Dygg 1 Dgyy +1 effect: Molecular dynamics simulations of water confined between
0.6 0.8 extended hydrophobic and hydrophilic surfac&sChem. Phys.
2 > - @) 2004 120, 9729-9744.
Deoo T1 Dgp +1 (38) Omega 2.1.0 ed.; OpenEye Scientific Software, Inc.: Sante Fe,
NM.

whereDr+ is the slope of the mean square atomic displace- (39) MacroMode] 9.1 ed.; Schirdinger, LLC: New York, NY.
ment versus time curve from a series of short molecular (40) VolSurf 4.1.4 ed.; Molecular Discovery, Ltd.
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reported in the literaturé:#? Initially, a random subset of  tion.*® The LMS algorithm minimizes the impact of leverage
descriptors is chosen. Following this, a descriptor is removed data on the coefficients, possibly alleviating some concerns
and replaced with another feature from the pool. This about the quality of data used to derive the intrinsic solubility
replacement is done randomly, with the exception that the model. For an in-depth discussion of the algorithm the reader
new feature must have an< 0.9 (2 < 0.81) to the other s referred to ref 46. The approach has been used previously
features already present in the model. There is a 1% chancen the chemical literaturé.4°

at each iteration that the number of descriptors may be Crystal Packing Simulations.Compounds were selected
decreased or increased. The PRESS score is then evaluatefdr purchase based on the following criteria: (a) having an
for this new model. Each descriptor used in a model adds available neat (no salts or solvates) X-ray structure in the
0.002x rms,, to the PRESS score, where gyis the RMSE Cambridge Structural Database (CSB(h) being reasonably

if every observation was predicted as the average value ofdrug-like by manual inspection, and (c) being available from
the dependent variable. If the score is an improvement overa vendor (Table 1). Using our internal protocols, the
the previous model, the result is accepted and the proceduresolubility at a pH of 6.5 was measured. In addition to this
repeats. If the model is not an improvement, the model may data, 37 discovery compounds were also employed. These

still be accepted based on a probability derived from the compounds had previously measured solubility from crystal-
Boltzmann distribution. line material along with solved crystal structures. Together,

this collection of compounds was used to assess the ability

The implementation used here was programmed in our )
P prog of the model to capture the effect of crystal packing on

laboratories and fixes the initial temperature such that 80% lubilit
of the detrimental steps are accepted origin&lyThe Solubility.

temperature is then decreased by 25% every 1000 iterations. '€ Crystal packing paramet®.c from eq 2 is based

The selection process halts when no model is accepted foron the hypothesis that crystal lattice energy should be
proportional to the stability of a unit cell when additional

900 iterations. . ) .
The selected feature values for the training data were thenenergy is added fo the systefi” To assess this, the
9 crystallographic unit cell was utilized in a series of short

normallglgd (tjoba rar:ge of 0 ‘Zr,‘d 1. These normsahzed Vall,“:“s'molecular dynamics simulations in which the mean square
were utilized by a least median squares (LMS) regression atomic displacement over time was calculated. The MD

algorithm* to generate coefficients. LMS regression mini simulations were performed with Discover3 (cdiscoer)

mizes the median squared residual rather than the sum of ging the CFF91 force field. For complexes that could not

the squared residuals as is performed using ordinary multiplep,, parametrized using CFF91, the CVFF force field was
linear regression. By minimizing the median squared residual,  sed. The simulations are performed as a constant pressure
the impact of compounds with high statistical leverage to (NTP) simulation at a pressure of 1 bar. The simulation
alter the derived linear coefficients is limited to yield the qetajls are shown in Table 2. Separate simulations are
linear relationship that best fits the majority of the available

data. A simple way to think of observations with high i R _
leverage is that they have an unusual combination of values>) g roux, C. Are Good Leverage Points Good or Bad? International
. . . . . onference on Robust Statistics: Lisbon, Portugal, 2006.

for the independent variables (i.e., descriptors). This leaves 46 Rousseeuw, P. J. L.; Annick NRobust Regression and Outlier

these observations far from the bulk of observations in Detection John Wiley & Sons, Inc.: New York, NY, 1987; p

descriptor space used in the regression, providing these  329.

observations tremendous impact on the resulting coefficients.(47) Cruz Ortiz, M.; Sarabia, L. A.; Herrero, A. Robust regression

It is important to realize that an observation can have _ techniquesTalanta200§ 70, 499-512. ,

substantial leverage but not be an outlier, or could be an (&) 'gumenova, T. | Lee, A. L.; Wand, A. J. Backbone and Side
) . Chain Dynamics of Mutant Calmodulin-Peptide Complexes.

outlier and not have leverage. Leverage points that are  pjgchemistry2005 44, 12627-12639.

outliers will significantly distort the derived linear relation-  (49) Johnson, S. R.; Jurs, P. C. Prediction of acute mammalian toxicity

ship, while leverage points that are not outliers may from molecular structure for a diverse set of substituted anilines

significantly affect the resulting standard errors of predic- using regression analysis and computational neural networks.
Computer-Assisted Lead Finding and Optimization: Current Tools

for Medicinal Chemistry, [European Symposium on Quantitative

(41) Sutter, J. M.; Jurs, P. C. Selection of molecular descriptors for Structure-Activity Relationships], 11th, Lausanne, Sep6,11996;
quantitative structure-activity relationshig3ata Handling Sci. 1997, pp 3+48.

Technol.1995 15, 111-132. (50) Allen, F. H. The Cambridge Structural Database: a quarter of a

(42) Sutter, J. M.; Dixon, S. L.; Jurs, P. C. Automated Descriptor million crystal structures and risingicta Crystallogr., Sect. B:
Selection for Quantitative Structure-Activity Relationships Using Struct. Sci2002 B58 380-388.

Generalized Simulated Annealing. Chem. Inf. Comput. Sci. (51) Gavezzotti, A. The chemistry of intermolecular bonding: organic
1995 35, 77—-84. crystals, their structures and transformatid®gnlett2002 201—

(43) Sutter, J. M. Personal communication; Accelrys, Inc. 214.

(44) Massart, D. L.; Kaufman, L.; Rousseeuw, P. J.; Leroy, A. Least (52) Gavezzotti, A. A Molecular Dynamics Test of the Different
median of squares: a robust method for outlier and model error Stability of Crystal Polymorphs under Thermal Strain.Am.
detection in regression and calibratichnal. Chim. Actal986 Chem. Soc200Q 122 10724-10725.

187, 171-179. (53) Discover3 (cdiscaer); Accelrys, Inc.: San Diego, CA.
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Table 1. Compounds Used To Parametrize Crystal Packing Simulation

Observed Solubility Predicted Solubility
pH6.5,ug/ml pH6.5, ug/mL

Cl
JeneBeg
NG A DADDUH 0.016 0.0013 0.55

1,4-bis(3,5- dichloro-2 pyridyloxy)-benzene

C C CLPSUL10 0.05 0.974 0.5

Bis 4- Chlorophenyl Sulfone

J
N CINNAZ 0.24 0.07 0.91
o

-trans-cmnamyl -4-diphenylmethyl-piperazine

CSD Entry Xpack

FADBUI 0.81 222 0.46

3 chlorophenyl) -2-hydroxy-1-naphthaldimine

o
O Q QQQESPO1 0.93 0.597 1.26
HO

4-(4-hydroxyphenyl)-2,2,4-trimethylchroman
A S

I/J\

NN FAYXUY 2.13 54.5 0.32
N-(2-pyridyl)-N'-o-tolythiourea

HN%N yNH
4 \/\,NQ’ "@\ BEQUUC 17.1 333 0.62
Cl
Domperidone
°. NH
o N)
/©)'\/\/" @ FBPAZDO1 32 209 0.58
F
Spiperone
OH
[o]
HALDOLO1 61 131 0.3
E
Haloperidol
N= Br

BRBNIT 157.2 191 0.3
4-Bromobenzonitrile

2N
: T s FAGFUO 3495 509 0.14

o
Phenacyl Thiocyanate

Qg
AL O
©/N g COKBOT 2608 871 0.66
W
o o

(+/-)-Sulfinpyrazone

/ p—
Q_/ BUMXOW10 4303.5 12020 0.62

Alpha-(4-Methyl-2 Pyridylimino)-O-Cresol
\

N
: N:© FOKJIY 10732.6 105 1.1
on /

2-(1,3-Dimethyl-2,3-Dihydro-1H-Benzpimidazol-2-YL)-Phenol
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Table 2. Parameters for the Molecular Dynamics Table 3. Descriptors and Coefficients of the Intrinsic
Simulations Solubility Model
nonbonded interactions: coeff
summation method: group based descriptor label MW =250 MW < 250
cutoff: 45
spline width: 1.0 no. of H-bond acceptors HA 1.22 0.72
buffer width: 0.5 hydrophilic interaction volume W5 3.98 2.23
minimization: at —3.0 kcal/mol
iterations: 300 hydrophilic capacity
movement limit: 0.2 at —0.2 kcal/mol Cwl 0.85 1.66
steepest descent convergence: 1000 at —2.0 kcal/mol Cw4 —6.88 —6.51
conjugate gradient: convergence: 10 method: Polak hydrophobic interaction volume D3 —-1.94 —1.48
Newton convergence: 0.1 method: BFGS at —0.6 kcal/mol
dynamics: critical packing CP —2.42 —1.99
time: 10 ps step: 1fs molecular weight MW —2.98 —1.46
ensemble: NPT temp control: Andersen cLogP cLogP —5.69 —6.03
integration method: velocity Verlet constant 0.1 2.36
pressure: 1 bar pressure control: Parrinello .
R? (train/test) 0.88/0.93  0.79/0.85

performed over 10 ps at temperatures of 300, 400, 500, 600, RMSE (rain/test) 0.61/0.50  054/0.49

and 700 K. The mean square atomic displacement (MSD),
relative to the starting unit cell coordinates, is calculated
every 10 fs and plotted versus simulation time at each
temperature. The valugr used in eq 2 the slope of the MSD
vs time curve at temperatufie Each simulation is repeated
3 times, and the average and standard deviatiofyffrom
eq 2 is calculated.

The maximum effect of 2 orders of magnitude was selected
based on the results presented in Bergstrom &t lal.this

We have assumed a standard deviatioa-6f5 for the K,
estimates. The variability of the intrinsic solubility is varied
within the 90% confidence interval of prediction from the
multiple linear regression. The value of the crystal packing
parameterXpaci iS varied within the standard deviation of 3
runs of the MD simulation. Each of these components of
the pH-dependent solubility prediction model is varied with
the above error bounds over 1000 iterations at each pH. The
, o ) o median calculated solubility value at each pH is used as the
work, the authors cite the typical increase in solubility upon point estimate, with the 10th percentile and 90th percentile

ionization to be approximately 4.25 orders of magnitude. 5,65 ysed as the bounds for the confidence interval. The
However, the greatest value they measured was 6.5 order§yaqq is similar to the percentile method described by
of magnitude. We hypothesized that this difference was Bucklandss

related more to the effect of crystal packing leading to a
suppression of the intrinsic solubility than to the heightened Results and Discussion
impact of ionization for some compounds. When the
functional form for eq 2 was postulated, the coefficients were
chosen to sum to 2, with larger effects arising as the unit
cell maintained organization even at high temperature.
When used for prediction, it is typical for compounds to

The prediction of aqueous solubility at an arbitrary pH
begins with an estimate of the intrinsic solubility. The
intrinsic solubility of a compound is the aqueous solubility
of the nonionized form of the compound. For our purposes,
this intrinsic solubility should not include the impact of

IiCk tcrystallographlcltia:ja. “_1 thtﬁ caseé lvlr:ualt cryst?l crystal packing to the extent possible. Second is a correction
structures were simuiated using the crystal STucture ol ¢, yhe - offect of ionization on the pHsolubility curve.

related compound. These were generated by overlay_mg theFinaIIy, the model includes a procedure for evaluating the
new compound on to the monomers of the asymmetric unit impact of crystal packing on the agueous solubility.
cell O; tge l_<n0\t/\r/]n égggmr;d Ihe l.utmt .fﬁ.“ ;vs;\zglen The features selected for the estimation of the intrinsic
ixpan ﬁ using | et in th unl;: lona Idy W tml dat ' solubility are shown in Table 3 along with their coefficients.
. n?/ jadg otrh sova ?St 'g te ? SErved crystal data were Figure 1A shows the calculated versus observed plot for the
included in the simulated structure. . _ higher MW nonionizable compounds used in the training
Confidence Interval Estimate A Monte Carlo simulation ;14 validation of this model. Clearly, the model performs
is used to generate an estimate of the 90% confidence interval,qo|| over the span of the 11 orders of magnitude of the
of prediction. Each of the main components of the model is jninsic solubility data. Figure 1B shows the same data, but
varied by adding normally distributed noise with a mean of ¢, sed in on the 0.04M to 1004M range of data that is
zero and a standard deviation consistent with the variability ,4ct relevant to discovery in the pharmaceutical industry.

of the estimated component. While the ACRprogram A similar plot of the low MW data is shown in the
does provide a specific error term for each estimatg p Supporting Information.

we have found it to be unrealistically low for most estimates.

(55) Buckland, S. T. Algorithm AS 214: Calculation of Monte Carlo
(54) SYBYL Tripos, Inc.: St. Louis, MO. Confidence IntervalsAppl. Stat.1985 34, 296-301.
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£ . 00 . oo the interplay between the CW2 and CW4 features is
e %0 o o particularly important in the model.
75 2 Crystal packing has long been a vexing problem with
© .- . .
8 Ce, ®  ° respect to agueous solubility prediction. Yalkowsky's general
8 7 5 5 4 solubility equatio”® was an early attempt at incorporating
Observed Solubility (log M) information regarding the crystal lattice into a prediction of
) o aqueous solubility. More recently, several attempts have been
Figure 1. (A) Calculated versus observed plot for intrinsic made at predicting melting points, a frequent surrogate for

solubility for nonionizable training and test data. (B) Focused

: = crystal packing in solubility modef$:32:56:60 We hypoth-
on the pharmaceutically relevant solubility range.

esized that the amount of atomic motion observed in a unit
cell in response to adding increasing amounts of energy
Solubility is the balance of forces between cavity forma- Would be related to the effect of crystal packing on solubility.
tion, solute-solute interactions, and solutsolvent interac- ~ Figure 2 shows the relationship betwe¥accand melting
tions. The MW and the critical packing feature relate to the Point for three different groups of crystal structures. One
molecular size and shape. They are likely related to the S€t Uses ;everal crystal forms ofa}3|ngle compound, each of
energy required to form a cavity in the solvent large enough WhICh varies by salt or solvate or is a polymorph of another
to hold the solute molecule. The remaining features most included structure. The other two groups of compounds
likely relate to intermolecular interactions between the solute FéPresent compounds from two different discovery projects.
and solvent molecules or between multiple monomers of the The relationship is roughly linear within each group of
solute. In general, the coefficients are in line with the basic
intuition regarding the role of hydrophilicity and solubility.
The lone exception is the sign of the coefficient on the
hydrophilic capacity factor at2.0 kcal/mol (CW4) descrip-

(56) Katritzky, A. R.; Jain, R.; Lomaka, A.; Petrukhin, R.; Maran, U.;
et al. Perspective on the Relationship between Melting Points and
Chemical StructureCryst. Growth Des2001, 1, 261-265.

.. . . . (57) Karthikeyan, M.; Glen, R. C.; Bender, A. General melting point
tor. The coefficient on this descriptor leads to a prediction prediction based on a diverse compound data set and artificial

of Iowgr solupility for compognds with 'higher hydrophilic neural networksJ. Chem. Inf. Model2005 45, 581—590.
potential. At first glance, this is contradictory to the general (58) Johnson, J. L. H.; Yalkowsky, S. H. Two New Parameters for
perception regarding solubility and polarity. However, Predicting the Entropy of Melting: Eccentricity (e) and Spirality
solute-solute interactions are also very important in agueous (m). Ind. Eng. Chem. Re€005 44, 7559-7566. _ _
solubility. Raevsky and coauthdtsincovered a similar trend ~ (59) Jain, A Yang, G.; Yalkowsky, S. H. Estimation of Melting Points
in experimental data in which compounds with strong gg?lrga”'c Compoundsnd. Eng. Chem. Re2004 43, 7618~
H-bor.u_:i accgptors _and donors have lower t_han expe,Cted((SO) Bergstroem, C. A. S.; Norinder, U.; Luthman, K.; Artursson, P.
solubility. IF is possible that the CW4 fea.ture 1S Qescnblng Molecular Descriptors Influencing Melting Point and Their Role
the potential for stronger solutesolute interactions for

in Classification of Solid Drugsl. Chem. Inf. Comput. S@003
certain types of polar groups. It is also worth noting that 43, 1177-1185.
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Figure 3. Results from the crystal packing simulation of 'g: s
griseofulvin. The GRISFLO3 structure was utilized from the £
CSD. The slopes of the mean square displacement curves § 7]
are as follows: 300 K, 0.01; 400 K, 0.24; 500 K, 0.37; 600 K, ks
0.67; 700 K, 0.57. Equation 2 gives the result Xack = 1.57. E -8
. . 9 : : ; ;
compounds, but shifts to higher values@icas the average 9 8 7 & 5 4 3 2
number of H-bonds in the unit cells decreases. This suggests Observed Intrinsic Solubility (log M)

avenues for further investigation going forward.

Figure 3 shows the plot of the mean squared atomic
displacement versus time for griseofulvin, a marketed
antifungal known to have solubility limited absorption. This
simulation, performed using the GRISFLO3 structure from

Figure 4. Predicted versus observed results for intrinsic
solubility of compounds from Wassvik et al. (A) Results from
the intrinsic solubility model only. (B) Predictions including the
estimate of the impact of crystal packing.

the CSD, gives the value 0fack = 1.57. For these two compounds, the inclusion of the crystal packing
Wassvik et aP' measured the intrinsic solubility of parameter gives predictions that are noticeably worse than
griseofulvin to be logh,M) = —4.83 (14.8uM). The those of the intrinsic solubility model alone. TR&improves

intrinsic solubility prediction generated by the model de- to 0.85 and the RMSE to 0.62 by excluding these two
scribed here is log,M) = —3.33 (141uM). Including the compounds. Perphenazine is also very poorly predicted,
effect of crystal packing above, the estimated solubility is although the prediction does not get any worse by including
l09(S—XpackM) = —4.90 (12.5uM). Predictions of the  the crystal packing contribution.
intrinsic solubility of 25 compounds given in Wassvik efal. Of course, most potential drug compounds contain some
were generated using the intrinsic solubility model discussed sort of basic or acidic ionizable functionality. The literature
above. Figure 4A shows the prediction results using only contains several reports of using the Henderddasselbalch
the intrinsic model. The model predicts the intrinsic solubility equation to correct for ionization. We have followed the same
quite well with anR? = 0.70 and an RMSE= 0.85 log unit. basic approach here. Bergstrom etfdlighlighted some of
Figure 4B shows the predictions after correction for crystal the weaknesses of this approach including the variability in
packing. the slope of ionization. We made several unsuccessful
The crystal packing corrections were generated using attempts (not shown) to correct for the effects of aggregation
crystal structures obtained from the CSD. By including a on the slope of ionization. Included among these were linear
contribution from crystal packing, th&? improves to 0.75 and nonlinear QSAR approaches to predict aggregation that
while the RMSE is increased to 0.86 log unit. While the incorporated conformational and energetic changes upon
overall RMSE does not improve with the inclusion of crystal ionization. While some of these approaches appeared inter-
packing effects, the median absolute error improves dramati-esting in training, none proved reliable in improving solubil-
cally from 0.63 to 0.46. This difference is the result of ity estimation upon external validation.
particularly poor predictions for mifepristone and diazepam.  For our purposes, we have utilized a predictéd psing
the ACD/K, programé? In addition, we cap the contribution
of ionization to solubility at 4.25 orders of magnitude for a

(61) Wassvik, C. M.; Holmen, A. G.; Bergstroem, C. A. S.; Zamora,
I.; Artursson, P. Contribution of solid-state properties to the
aqueous solubility of druggur. J. Pharm. Sci2006 29, 294— (62) ACD/pKa 4.76 ed.; Advanced Chemistry Development, Inc.:
305. Toronto, ON, Canada.
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Figure 5. Predicted pH-—solubility curve for glyburide.

Experimental data from ref 63.

single ionizable center and a total of 5 orders of magnitude
for more than a single ionizable center. While the cap of
4.25 is drawn from the literatu#eand may be reasonable
in the absence of any other information, the cutoff of 5 orders
of magnitude for polyelectrolytic systems is completely
arbitrary. It is worth pointing out that, while the predicted
impact of ionization is capped at 4.25 log units, it can appear

as great as 6.25 log units as a result of the depression of the

intrinsic solubility based on the contribution of crystal effects
discussed below.

Figure 5 shows the measufédand predicted pH
solubility curves for glyburide. The predicted intrinsic
solubility, excluding crystal packing, was5.904+ 0.351
(log molarity). The crystal packing simulation yiel&ac«
= 1.3+ 0.25, which together with the predicted L8ggives
—7.2 compared to a measufédog S, = —7.05. The
predicted &, was 4.86 using ACDM,, with an assumed
variability of £0.5. The measuredia is 5.3. Viewed as a
whole, the predicted pHsolubility curve is a quite reason-
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Figure 6. Predicted and observed pH—solubility curves for
(A) haloperidol HCI salt and (B) mesylate salt. Data from
ref 64.

packing simulation was performed based on HALDOLO1

from the CSD, which is a small molecular crystal structure

able estimate of the measured curve. However, estimates adf the HCI salt of haloperidol. Figure 6B shows the
a specific pH can have large errors when in the range of measure® and predicted pHsolubility curve for haloperidol

pH’s affected by ionization as evidenced by the predicted
solubility at pH= 6 being 7.4ug/mL (with a 90% range
from 2.4 to 24.1ug/mL) compared to a measured value of
0.62ug/mL.

Figure 6A shows the measufédand predicted pH
solubility curve for haloperidol as the HCI salt. The crystal

(63) Glomme, A.; Maerz, J.; Dressman, J. B. Comparison of a
miniaturized shake-flask solubility method with automated po-
tentiometric acid/base titrations and calculated solubilities.
Pharm. Sci2005 94, 1-16.

(64) Li, S.; Wong, S.; Sethia, S.; Almoazen, H.; Joshi, Y. M., et al.
Investigation of Solubility and Dissolution of a Free Base and
Two Different Salt Forms as a Function of pPharm. Res2005
22, 628-635.

as the mesylate salt. The crystal packing simulation was
performed based on the CSD entry YANMUW, where the
mesylate ion was modeled manually into the crystal structure
in place of the saccharinate ion. The replacement was guided
by simple pharmacophore and steric considerations. The
crystal packing simulation used the CFF91 forcefield, which
may have significant shortcomings when modeling charged
ions. In both cases, the predictions are quite reasonable
compared to the measured values. It is noteworthy that the
maximum solubility of the HCI salt is limited by the common
ion effect, which is not accounted for in the current model.
The model also uses a slope of 1.0 for the ionization curve.
The actual slope of the observed pbblubility plot for the
mesylate salt is slightly over 2.
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Figure 7. Descriptor impact on solubility predictions for
glyburide and haloperidol (HCI salt) at pH = 6.5. pH denotes
the impact from ionization at pH = 6.5, Xtal denotes the impact
from crystal lattice at pH = 6.5.
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Figure 8. HPLC log P (pH = 6.5) compared to the observed
solubility at pH = 6.5 for compounds from a single discovery
program. Measurements from crystalline material. Note that
most measured solubility values of either 0.1 or 1 ug/mL were
reported as <0.1 ug/L or <1 ug/mL, respectfully.

The ability to interpret a predictive model is critical to its
use in driving discovery projects. This is frequently one of
the major criticisms of models for ADMET related properties.
Figure 7 shows the descriptor impact on the solubility
predictions for haloperidol (HCI salt) and glyburide at a pH
of 6.5. Haloperidol and glyburide were predicted to have an
aqueous solubility of 130g/mL and 24ug/mL, respectively,
at pH of 6.5. The plot is generated by multiplying each
normalized feature value by its coefficient in the intrinsic
solubility model. Also shown are the contributions from the
crystal packing simulation and ionization at pH6.5. The
plot shows that the difference in the predictions for the two
compounds is largely driven by the difference in molecular
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Figure 9. Predicted aqueous solubility at pH = 6.5 compared
to the observed solubility at pH = 6.5 for compounds from a
single discovery program. Measurements from crystalline
material. Note that most measured values of either 0.1 or 1
ug/mL were reported as <0.1 ug/L or <1 ug/mL, respectfully.

by the degree of ionization (eq 1). At a pH of 6.5 both
glyburide and haloperidol are expected to be ionized.

The optimization of solubility in discovery projects is often
driven by a calculated lod® followed by a measured
chromatographic log® and measured solubility. Typically
this approach is quite reasonable, however occasionally this
strategy does not lead to improved solubility. Figure 8 shows
the relationship between the Idg measured by an HPLC
assay and the measured aqueous solubility for discovery
compounds from a single chemotype. All the measurements
were from crystalline material at pH 6.5. The correlation
is quite poor (2 = 0.21), indicating that crystal packing may
substantially affect aqueous solubility. Figure 9 shows the
correlation between the predicted solubility at 6.5 and
the measured solubility. The crystal packing tekyc, was
calculated using simulated crystal structures based on the
structure of a close analogue. The close analogue chosen
was one from the same chemical series with a solved X-ray
structure and was the closest to being “isographic” with the
compound of interest. The correlation between the predicted
and measured values is substantially improvet=t 0.56)
compared to the results for the measured RogVhile far
from ideal, these results imply a much greater utility in
evaluating molecular hypotheses with respect to solubility.

Conclusion

We have assembled a computational model for the
estimation of aqueous solubility at an arbitrary pH that
explicitly accounts for the effects of intrinsic solubility,
ionization, and crystal packing. While complicated in
functional form, the model is readily interpretable by
analyzing the underlying components in detail. In addition,
a Monte Carlo error function is employed to provide a
confidence interval for the estimate. This confidence interval
gives users a better appreciation of the sensitivity of an

weights. As discussed above, this feature likely encodes theestimate at a particular pH. This is particularly true when

energy required to create a cavity large enough to accom-

the pH of interest lies within 2 log units of thekp of the

modate each solute. Note that the effect of crystal packing molecule and the estimation solubility changes rapidly in
appears small in Figure 7 because the effect is modulatedresponse to small changes in pH.

522 MOLECULAR PHARMACEUTICS VOL. 4, NO. 4



Prediction of Aqueous Solubility articles

Another benefit of the approach employed here is that the into the model. It is difficult to quantify how similar a
method is likely to be more extensible than models that rely molecule must be to the chemical structure of an analogue
on high order machine learning algorithms. We believe this with a solved crystal structure in order for the simulated
is an important advantage as undoubtedly the method will structure to relevant. Strictly speaking, the structures need
need further improvement to include the effect of low MW to be nearly isographical to have a high likelihood of
aggregation, the common ion effect, and an expansion of adopting similar unit cells. One interesting possibility is the
the underlying chemical space captured by the training data.use of a simulation similar to the one discussed here to
In addition, there is much room for improvement in the evaluate nhumerous simulated crystal structures that can be
current approach to encoding crystal packing. It is quite generated from the several crystal structure prediction
probable that different computational parameters, possibly programs now available. However, as the experimental data
including longer simulation times, would improve the quality, for the aqueous solubility of polymorphs leans toward only
consistency, and reliability of the simulation. Our future work 2—10-fold differences in solubility, we believe a simulated
will also concentrate on the shift in the relationship between structure represents an acceptable starting point in the
Xpack @and melting point observed in Figure 2. absence of any of other information.

While an interesting approach, the crystal packing simula-

tion reported here is computationally intensive relative to S . 2
P P y validation data for the high MW and low MW intrinsic

most aqueous solubility models, taking approximately 1 CPU -
hour per temperature on an Opteron Linux workstation. In §o|ubll|ty models and plot of calculated versus observed

addition, it requires a real or putative crystal form upon which Instrinsic solubility for the_ low MW model. This material is
to act. The use of a simulated crystal structure, while available free of charge via the Internet at http:/pubs.acs.org.

pragmatic, introduces a significant potential source of error MP070030+

Supporting Information Available: Training and

VOL. 4, NO. 4 MOLECULAR PHARMACEUTICS 523



